

On the Smoothness and the Singular Support of the Minimum Time Function under Bracket-Generating Conditions

Teresa Scarinci

Let $\Omega \subset \mathbb{R}^n$ be an open bounded set and let X_1, \dots, X_N be smooth real vector fields on an open set Ω . We assume that they satisfy the Hörmander bracket generating condition, i.e., $\text{Lie}\{X_1, \dots, X_N\}(x) = \mathbb{R}^n$, $\forall x \in \Omega$. Here, $\text{Lie}\{X_1, \dots, X_N\}(x)$ denotes the space of all values at x of the vector fields of the Lie algebra generated by $\{X_1, \dots, X_N\}$. In this context we consider the minimum-time problem of minimizing the time to reach a given target set Γ following the trajectories of the Cauchy problem below

$$y'(t) = \sum_{j=1}^N u_j(t) X_j(y(t)), \quad t \geq 0, \quad y(0) = x. \quad (1)$$

The controls $u = (u_1, \dots, u_N)$ take values in the n -dimensional closed ball of unit radius centered at the origin. For this problems, abnormal minimizers and singular trajectories may occur, and this destroys in general the smoothness of T .

In this talk, we investigate the (lack of) regularity of T , the properties of its singular support, and the role played by the singular trajectories. We will focus our attention on the case where the target Γ is a smooth hypersurface of \mathbb{R}^n .

If time permits, we will also sketch some results and open questions for the affine-control problem with drift:

$$y'(t) = X_0(y(t)) + \sum_{j=1}^N u_j(t) X_j(y(t)), \quad t \geq 0, \quad y(0) = x. \quad (2)$$